A Location-Velocity-Temporal Attention LSTM Model for Pedestrian Trajectory Prediction
نویسندگان
چکیده
منابع مشابه
Soft + Hardwired Attention: An LSTM Framework for Human Trajectory Prediction and Abnormal Event Detection
As humans we possess an intuitive ability for navigation which we master through years of practice; however existing approaches to model this trait for diverse tasks including monitoring pedestrian flow and detecting abnormal events have been limited by using a variety of hand-crafted features. Recent research in the area of deeplearning has demonstrated the power of learning features directly ...
متن کاملHierarchical LSTM with Adjusted Temporal Attention for Video Captioning
Recent progress has been made in using attention based encoder-decoder framework for video captioning. However, most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., ”gun” and ”shooting”) and non-visual words (e.g. ”the”, ”a”). However, these non-visual words can be easily predicted using natural language model without considering visual...
متن کاملModel-based Pedestrian Trajectory Prediction using Environmental Sensor for Mobile Robots Navigation
Safety is the most important to the mobile robots that coexist with human. There are many studies that investigate obstacle detection and collision avoidance by predicting obstacles’ trajectories several seconds into the future using mounted sensors such as cameras and laser range finder (LRF) for the safe behavior control of robots. In environments such as crossing roads where blind areas occu...
متن کاملFuture Context Attention for Unidirectional LSTM Based Acoustic Model
Recently, feedforward sequential memory networks (FSMN) has shown strong ability to model past and future long-term dependency in speech signals without using recurrent feedback, and has achieved better performance than BLSTM in acoustic modeling. However, the encoding coefficients in FSMN is context-independent while context-dependent weights are commonly supposed to be more reasonable in acou...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2977747